

JOINT TRANSPORTATION
RESEARCH PROGRAM
INDIANA DEPARTMENT OF TRANSPORTATION
AND PURDUE UNIVERSITY

Back of Queue Warning and Critical
Information Delivery to Motorists

Lingxi Li, Yaobin Chen, Renran Tian, Feng Li

SPR-4306 • Report Number: FHWA/IN/JTRP-2019/24 • DOI: 10.5703/1288284317102

RECOMMENDED CITATION
Li, L., Chen, Y., Tian, R., & Li, F. (2019). Back of queue warning and critical information delivery to motorists (Joint
Transportation Research Program Publication No. FHWA/IN/JTRP-2019/24). West Lafayette, IN: Purdue University.
https://doi.org/10.5703/1288284317102

AUTHORS
Lingxi Li, PhD
Associate Professor of Electrical and Computer Engineering
School of Engineering and Technology
Indiana University–Purdue University Indianapolis

Yaobin Chen, PhD
Director of TASI and Chancellor’s Professor of Electrical and Computer Engineering
School of Engineering and Technology
Indiana University–Purdue University Indianapolis
(317) 274-4032
ychen@iupui.edu
Corresponding Author

Renran Tian, PhD
Assistant Professor of Computer Information and Graphics Technology
School of Engineering and Technology
Indiana University–Purdue University Indianapolis

Feng Li, PhD
Associate Professor of Computer and Information Science
School of Engineering and Technology
Indiana University–Purdue University Indianapolis

JOINT TRANSPORTATION RESEARCH PROGRAM
The Joint Transportation Research Program serves as a vehicle for INDOT collaboration with higher education in-
stitutions and industry in Indiana to facilitate innovation that results in continuous improvement in the planning,
design, construction, operation, management and economic efficiency of the Indiana transportation infrastructure.
https://engineering.purdue.edu/JTRP/index_html

Published reports of the Joint Transportation Research Program are available at http://docs.lib.purdue.edu/jtrp/.

NOTICE
The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the
data presented herein. The contents do not necessarily reflect the official views and policies of the Indiana Depart-
ment of Transportation or the Federal Highway Administration. The report does not constitute a standard, specifica-
tion or regulation.

1. Report No.
FHWA/IN/JTRP-2019/24

2. Government Accession No. 3. Recipient’s Catalog No.

4. Title and Subtitle
Back of Queue Warning and Critical Information Delivery to Motorists

5. Report Date
August, 2019
6. Performing Organization Code

7. Author(s)
Lingxi Li, Yaobin Chen, Renran Tian, and Feng Li

8. Performing Organization Report No.
FHWA/IN/JTRP-2019/24

9. Performing Organization Name and Address
Joint Transportation Research Program
Hall for Discovery and Learning Research (DLR), Suite 204
207 S. Martin Jischke Drive
West Lafayette, IN 47907

10. Work Unit No.

11. Contract or Grant No.
SPR-4306

12. Sponsoring Agency Name and Address
Indiana Department of Transportation (SPR)
State Office Building
100 North Senate Avenue
Indianapolis, IN 46204

13. Type of Report and Period Covered
Final Report
14. Sponsoring Agency Code

15. Supplementary Notes
Conducted in cooperation with the U.S. Department of Transportation, Federal Highway Administration.
16. Abstract
Back-of-queue crashes are one of the main sources for fatal accidents on U.S. highways. A variety of factors including low
visibility, slippery road surface, and driver distraction/drowsiness during highway cruising, all contribute to this type of fatal
crashes. Thus, it is very important to improve the driver’s situational awareness before they approach traffic queues on highways.

In this project, we develop a prototype in-vehicle back-of-queue alerting system that is based on the probe vehicle data from
INDOT. Speed changes among different road segments are used to identify slow traffic queues, which are compared with vehicle
locations and moving directions to detect potential back-of-queue crashes. This prototype system is designed to issue alerting
messages to drivers approaching the highway traffic queues via an Android-based smartphone app and an Android Auto device.
The performance of this system has been evaluated using the driving simulator and a limited number of on-road test runs. The
results showed the effectiveness and benefits of this prototype system.
17. Key Words
back-of-queue crashes, smartphone app, android auto, driving
simulator study

18. Distribution Statement
No restrictions. This document is available through the
National Technical Information Service, Springfield, VA
22161.

19. Security Classif. (of this report)
Unclassified

20. Security Classif. (of this page)
Unclassified

21. No. of Pages
25

22. Price

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

TECHNICAL REPORT DOCUMENTATION PAGE

EXECUTIVE SUMMARY

Introduction

Recent INDOT JTRP studies have found that back-of-queue
or end-of-queue crashes are one of the main sources for fatal
accidents on the highway. A variety of factors, including low
visibility, slippery road surface, and driver distraction/

drowsiness during highway cruising, contribute to this type of
fatal crash.

Based on probe vehicle data acquired through freight,
smartphones, and in-vehicle GPS units, INDOT is able to
monitor highway congestion, queue-starting locations, and
queue lengths covering all interstate highways in Indiana.
Although this information is available to the traffic managers,
there are no methods that are currently available to
effectively distribute information about potentially hazardous
conditions to drivers on the road.

Based on the existing INDOT real-time queue-monitoring
system, this project focused on developing a prototype end-of-

queue alerting system for drivers approaching traffic queues on
Indiana highways. More specifically, this research aimed to do the
following:

N Investigate feasible solutions to implement end-of-queue

alarms, considering both in-car and roadside options, and

tune the alarm parameters through driver simulator-based

studies.

N Determine the best practice for end-of-queue alarms by

examining the technical requirements and limitations of

different feasible solutions, with a focus on queue data

acquisition, vehicle localization, communications, and adap-

tive in-vehicle alarms.

N Develop a prototype end-of-queue alerting system based on

probe vehicle data and evaluate the benefits via a driving

simulator–based study and a limited number of on-road

driving tests.

Findings

N The establishment of INDOT’s web service was very

important for the IUPUI team, allowing them to fetch

traffic data in real-time and develop algorithms for issuing

the end-of-queue alerts to drivers on the road.

N To find efficient and effective ways to distribute hazardous

road information to on-road drivers, multiple potential

solutions were investigated, such as portable roadside

message boards, in-vehicle smartphone apps, and vehicle-

to-vehicle communications based on in-vehicle devices. After

a thorough literature review and an evaluation of existing

data sources, the chosen end-of-queue alerting mechanism

was in-vehicle smartphone app-based alerts. The alert

messages will be sent through Android-based smartphone

apps via the 4G network and the Android Auto device.

N The driving simulator is a very useful tool for evaluating the

benefits of the developed prototype end-of-queue alerting

system. Subjects were recruited to be tested in traffic

scenarios with and without alerts and with different driving

statuses (normal, distracted, and drowsy). Driver and driving

data were collected and analyzed.

N Initial investigation proves that this alerting system can

reduce intensive driving behavior overall and has the

potential to increase driving safety.

Implementation

To implement the end-of-queue alerting system on the Android-

based smartphone, a Java-based application was developed.

Google map API was used to show the map information on the

smartphone. To monitor the delta-speed changes, web service from

INDOT was used. An algorithm was developed to find the speed

events based on the current GPS coordinates of the smartphone.

To debug the application, a separate mechanism was developed to

simulate the real-time data in computer programs. This application

was also tested on different highways and associated log files were

created for debugging purposes. The notification classes were used

to show the alerts on the smartphone, including sound, text, and

vibration features.

The Android devices were purchased and their functions were

evaluated. The Android Auto device we used was the Kenwood

DDX9704S display and the Android phone was the Samsung S7;

both were powerful enough for our research needs. Based on the

evaluation, two different methods for sending out notifications

were tested. The first one was to send notification as a text

message. Taking advantage of the powerful Android Auto app

and Google Assistant, the notification can be clearly displayed

and interactive. The second method was to mirror the screen of

the phone to the Android Auto display. In this way, more intuitive

information can be shown. Both methods have pros and cons and

are suitable for different needs. The smartphone app and Android

Auto device were road tested. Both devices functioned well on the

highway during the test runs.

The driving simulator in the TASI laboratory at IUPUI was

set up for the testing of the prototype system. A platform was

designed to utilize the driving simulator system (HyperDrive) and

provide the mobile application with a simulated real-world view of

Indiana highway traffic. Five subjects were asked to participate in

tests designed to evaluate the effects of having an end-of-queue

alerting system in the driving simulator. Each subject was asked to

perform six driving tests in total. Subjects drove in the driving

simulator under normal, distracted, and drowsy conditions with

and without alerts. The driving simulator was able to collect

braking and crashing data when the subject approached the

queue. The performance of the prototype system was evaluated

through the comparison of the data from the two test categories.

CONTENTS

1. INTRODUCTION . 1
1.1 Background . 1
1.2 Research Objectives and Approaches . 1
1.3 Research Team . 1
1.4 Organization of the Report . 2

2. PROBE VEHICLE QUEUE DATA ACQUISITION (TASK 1). 2
2.1 Introduction . 2
2.2 Technical Approach . 2
2.3 Summary. 2

3. INVESTIGATION OF FEASIBLE END-OF-QUEUE ALERTING SOLUTIONS (TASK 2) 3
3.1 Introduction . 3
3.2 Technical Approach . 3
3.3 Summary. 3

4. HARDWARE/SOFTWARE IMPLEMENTATION FOR PILOT ALERTING SYSTEMS (TASK 3) . . 3
4.1 Introduction . 3
4.2 Technical Approach . 3
4.3 Summary. 7

5. EVALUATION OF PILOT ALERTING SYSTEMS IN DRIVING SIMULATOR (TASK 4). 8
5.1 Introduction . 8
5.2 Technical Approach . 8
5.3 Results . 13
5.4 Summary. 14

6. EVALUATION OF REFINED PILOT ALERTING SYSTEMS WITH LIMITED ROAD TESTING
(TASK 5) . 16

7. SUMMARY. 17

REFERENCES . 17

LIST OF TABLES

Table Page

Table 5.1 Key Variables Collected After Simulation 12

LIST OF FIGURES

Figure Page

Figure 1.1 INDOT real-time queue monitoring system based on probe-vehicle data 1

Figure 2.1 Project plan—phase 1 in simulated environment 2

Figure 2.2 Project plan—phase 2 in real traffic environment 3

Figure 4.1 Flow chart of the algorithm 4

Figure 4.2 A sample JSON file 5

Figure 4.3 Notification on the smartphone 5

Figure 4.4 Android app emulator 6

Figure 4.5 Upload KML files to emulator 7

Figure 4.6 Android devices used for testing 7

Figure 4.7 Message/voice alerts 8

Figure 4.8 Synchronization of the smartphone and Android Auto device 8

Figure 5.1 TASI DriveSafety high-fidelity driving simulator 9

Figure 5.2 Building the experimental platform for subject testing 9

Figure 5.3 Overall structure of the driving simulator 10

Figure 5.4 Illustration of highway I-465 11

Figure 5.5 HyperDrive interface 11

Figure 5.6 Completed highway I-465 in DS-600 driving simulator 12

Figure 5.7 Actual test conditions 12

Figure 5.8 Order of tests for data collection 13

Figure 5.9 Comparison of extreme steering angles between cases with and without end-of-queue alerts when approaching

the end-of-traffic queues 13

Figure 5.10 Comparison of extreme braking percentage between cases with and without end-of-queue alerts when approaching

the end-of-traffic queues 14

Figure 5.11 Comparison of extreme deceleration between cases with and without end-of-queue alerts when approaching the

end-of-traffic queues 14

Figure 5.12 Comparison of extreme latitude deceleration between cases with and without end-of-queue alerts when approaching

the end-of-traffic queues 15

Figure 5.13 Comparison of extreme steering angles between cases with and without end-of-queue alerts when approaching the

end-of-traffic queues at different driver statuses 15

Figure 5.14 Comparison of extreme braking percentages between cases with and without end-of-queue alerts when approaching

the end-of-traffic queues at different driver statuses 16

Figure 6.1 Visualizing INDOT speed events map 16

Figure 6.2 On-road tests on different highways 17

1. INTRODUCTION

1.1 Background

Recent INDOT JTRP studies (Mekker et al., 2020)
concluded that highway congestion is causing a much
higher crash rate compared to uncongested driving
conditions. For the highway congestion, back-of-queue
or end-of-queue crashes are one of the main sources
for fatal accidents and account for about 13% of
all fatal accidents (Mekker et al., 2020). A variety of
factors including low visibility, slippery road surface,
and driver distraction/drowsiness during highway
cruising, all contribute to this type of fatal crashes.

The role of common ADAS (advanced driver assis-
tance systems) features such as adaptive cruise control
(ACC) and lane-keeping assist (LKA) is two-sided in
these back-of-queue crash scenarios. On one hand,
some on-board sensors may help issue imminent crash
warnings or braking assist to mitigate the crash con-
sequences. On the other hand, these features may also
cause increased driver distraction and inattention that
potentially delay appropriate driver responses. Research-
ers have developed and evaluated end-of-queue alerting
systems (Tampère et al., 2009; Nowakowski et al., 2012)
showing good potential in smoothing the transition from
free flow to congestion, as well as improving drivers’
situational awareness. However, the published studies
lack a systematic investigation on alarm timing, moda-
lity, frequency; driver status; and the corresponding
driver responses, which significantly affect the effective-
ness of the crash warnings (Lee et al., 2002).

Based on probe vehicle data acquired through freight,
smartphones, and in-vehicle GPS units, INDOT is able to
monitor highway congestion, queue starting locations, and
queue lengths (Mekker et al., 2017) covering all interstate
highways in Indiana, as illustrated in Figure 1.1. Although
this information is available to the traffic managers now,
there are no currently available methods to effectively
distribute these potential hazards to on-road drivers.

1.2 Research Objectives and Approaches

Based on the existing INDOT real-time queue-
monitoring system, this project focuses on developing
a prototype end-of-queue alerting system for drivers
approaching congestion queues on Indiana highways.
More specifically, this proposed research aims to do the
following:

N Investigate feasible solutions to issue end-of-queue alerts,

considering both in-car and roadside options, and to

tune the parameters through driver simulator-based

studies.

N Determine the best practice for end-of-queue alerts by

examining the technical requirements and limitations for

different feasible solutions, and focusing on the aspects

of queue data acquisition, vehicle localization, commu-

nications, and adaptive in-vehicle alarms.

N Develop a prototype end-of-queue alerting system

based on the probe vehicle data and evaluate the

benefits via a driving simulator-based study and on-

road test runs.

1.3 Research Team

Transportation Active Safety Institute (TASI),
Indiana University-Purdue University Indianapolis
(IUPUI), 723 W. Michigan Street SL-160, Indiana-
polis, IN 46202, USA.

Principal/Co-Principal Investigators

N Dr. Yaobin Chen (PI), Professor of Electrical and

Computer Engineering, responsible for overall project

management and operation.

N Dr. Lingxi Li, Associate Professor of Electrical and

Computer Engineering, responsible for overall project

technical operation.

N Dr. Feng Li, Associate Professor of Computer Infor-

mation and Graphics Technology, responsible for probe

vehicle data acquisition and communications.

Figure 1.1 INDOT real-time queue monitoring system based on probe-vehicle data.

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2019/24 1

N Dr. Renran Tian, Assistant Professor of Computer Infor-

mation and Graphics Technology, responsible for driving

simulator-based study, data collection, and data analysis.

Postdoc Researcher

N Dr. Jue Zhou, responsible for supporting all project tasks.

Student Research Assistants

N Keyu Ruan, PhD student, Electrical and Computer

Engineering, IUPUI.

N Dan Shen, PhD student, Electrical and Computer

Engineering, IUPUI.

N Zahra Yarmand, M.S. student, Computer Information

and Graphics Technology, IUPUI.

N Tina Chen, M.S. student, Electrical and Computer

Engineering, IUPUI.

Student Hourly Workers

N Hamidreza Lotfalizadeh, PhD student, Electrical and

Computer Engineering, IUPUI.

N Harshitha Veeramachaneni, M.S. student, Electrical and

Computer Engineering, IUPUI.

N Alex Bemis, B.S. student, Electrical and Computer

Engineering, IUPUI.

1.4 Organization of the Report

This report documents the research objectives, a
detailed description of research methods, and the
results for the project year. Each section in the report
corresponds to one specific task.

2. PROBE VEHICLE QUEUE DATA ACQUISITION
(TASK 1)

2.1 Introduction

The real-time traffic data of the highway delta-speed
events on Indiana interstates is prepared by the INDOT
team. This data is provided in a JSON format and gets

updated every minute. This data includes different
parameters of the event such as coordinate, direction,
speed, name of the interstate, etc. We developed
computer programs in Java to call the web service
and fetch the data every minute. In our program, we
handled repetitive event points. In particular, we
followed a two-phase project plan: (1) Testing the core
algorithm using manually generated GPS coordinates
and demo map data in the simulated environment
(shown in Figure 2.1). (2) Issuing alert messages to
drivers by fetching the real-time traffic data from
INDOT web service (shown in Figure 2.2).

2.2 Technical Approach

To access the data prepared by INDOT in our Java
application, we created several classes related to the
outputs of the web service. These classes were used
to contain the information we receive from the JSON
file and have the same properties. In particular, we
developed several Java functions to convert JSON data
files into Java classes. After that, we used a Java thread
to send a request to the web service to fetch the data.
This thread is responsible for reading the data from the
web service and filling out the classes. After this step,
we are able to access the latest information about the
delta speed events in our Java program. This data will
then be used in speed event detection algorithms. For
the simulated environment, we fill the same classes with
the data we get from the JSON file that contains fake
delta speed events.

2.3 Summary

With the help of INDOT web service, we have access
to the real-time data of all the delta-speed events on
Indiana interstate highways in our application with a
refresh rate of one minute. We developed computer
programs in Java to fetch the data in real-time. This data
is one of the most important inputs for the algorithms we
developed to issue the alerts for this project.

Figure 2.1 Project plan—phase 1 in simulated environment.

2 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2019/24

Figure 2.2 Project plan—phase 2 in real traffic environment.

3. INVESTIGATION OF FEASIBLE END-OF-
QUEUE ALERTING SOLUTIONS (TASK 2)

3.1 Introduction

The objective of this task is to investigate feasible
end-of-queue alerting solutions by considering typical
highway traffic-queue scenarios, road characteristics,
and environmental factors.

3.2 Technical Approach

Through a comprehensive literature review and
discussions with the INDOT team, the main technical
approach for this task is to deliver in-vehicle alert
messages to drivers through smartphone apps and a 4G
network. In particular, the Android Auto device is able
to be connected to Android-based smartphones and is
available in many passenger vehicles. Alert messages
can be delivered efficiently to drivers approaching the
queue on highway via smartphone app. Smartphone
GPS data can be used to obtain vehicle locations and
directions. API for these apps was investigated along
with proper alerting mechanisms to drivers. The smart-
phones of drivers approaching the highway traffic-
queue can receive alerting information so that the
drivers can be aware of the upcoming hazardous traffic
information.

3.3 Summary

In this task, we investigated a variety of feasible
end-of-queue alerting solutions. For this project, the
technical approach to deliver in-vehicle alert messages
to drivers was through Android-based smartphone
apps and the Android Auto device.

4. HARDWARE/SOFTWARE IMPLEMENTATION
FOR PILOT ALERTING SYSTEMS (TASK 3)

4.1 Introduction

In this task, we aimed at developing the hardware/
software required for the prototype end-of-queue alert-
ing system. Related hardware/software was implemented

for further testing and evaluation, which consists of the
following:

N Hardware: We simulated a hardware environment by
integrating an aftermarket multimedia receiver with the
Android Auto device and an Android-based smartphone
(Samsung Galaxy S7).

N Software: The main functions of the Android-based app
application were the following:

1. Accessing the real-time traffic data of the speed
events from INDOT web service.

2. Accessing the current interstate name using Google
API.

3. Obtaining vehicle locations and directions through
GPS coordinates of the smartphone.

4. Determining potential risks when the vehicle appro-
aches highway queues.

5. Issuing end-of-queue alerts to drivers via developed
smartphone app.

4.2 Technical Approach

4.2.1 Software—Android Studio

Android Studio. We used Android Studio to imple-
ment the Android application. Android Studio is the
official integrated development environment (IDE) for
Android application development. It is based on the
IntelliJ IDEA, a Java integrated development environ-
ment for software, and it incorporates its code editing
and developer tools. Android Studio is available for
Mac, Windows, and Linux desktop platforms. Since we
used Macbook for coding in this project, we used the
Mac version of the Android Studio.

Algorithm. In this section, we describe the algorithm
that is used for the end-of-queue alerting system. In
general, it works based on matching the current road
name that the vehicle is on and its driving directions
with the road name and road direction returned from
INDOT web service. Using this matching, we can find
delta-speed events on the current interstate and issue
the alerts by measuring the distance of the vehicle to
every delta-speed point. Some variables, including

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2019/24 3

hazard distance, mode of execution, zoom rate, etc.,
are defined at the very beginning in the program and
can be changed based on different needs. The following
sections will give more details about each step. The flow
chart of the algorithm is shown in Figure 4.1.

a. Accessing the latest delta-speed events. The first
step of the algorithm is to fetch the real-time traffic
data from INDOT web service. The output of this
web service is a JSON file. For this purpose, we devel-
oped a Java thread to send a get request to INDOT
web service to fetch the real-time delta-speed events
data and fill out the Java classes. The data returned
from INDOT web service have different properties.
The most important properties that we used in the

algorithm are summarized below. Figure 4.2 shows a
sample JSON file.

N Coordinates: This is a set of latitude and longitude that

specify the location of that event.

N Direction: The direction of the interstate where the event

occurs.

N Road: The name of Interstate where the event occurs.

b. Using GPS coordinates to find the location. We
used the GPS coordinate captured from the smart-
phone to determine the location of the vehicle. Clearly,
the GPS coordinate changes frequently when the
vehicle is moving. If we need to test with the emulator,
we have to upload the KML file containing the GPS

Figure 4.1 Flow chart of the algorithm.

4 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2019/24

Figure 4.2 A sample JSON file.

coordinates of the simulated phone. Based on the data,
we developed a mechanism to find delta-speed events
on the driving direction of the vehicle.

c. Finding the road name. To find the current road
name where the vehicle is on, we used the Google API.
This API gets the current GPS coordinate as an input
and returns a list of addresses related to this coordinate.
We created a function in the program to detect if the
road name returned from the API is the name of
interstate or not. If the returned name is an interstate,
we find its name; if not, we ignore the GPS coordinate.

d. Matching road names to find delta-speed events.
When we get the interstate name from the API, we
matched this name with the data returned from INDOT
web service to determine if there is any speed event on
the interstate. If there is an event, we set the first point
as a start point and use it to calculate the direction of
the vehicle in the next step.

e. Determining vehicle direction. We used a series
of GPS coordinates of the vehicle to determine the
driving direction of the vehicle on interstate highways.
In parallel, a thread is developed to check whether the
driving direction of the current interstate matches with
the direction that the web service returns. If we find a
match, then we are able to fetch the delta-speed events
that are currently detected.

f. Calculating distance. After we fetch all delta-
speed events, we have to detect the nearest event on
the driving direction of the vehicle to issue the alert.

For this purpose, we created a function inside the Java
program to calculate the distance from the current
location to every delta-speed event that we are detect-
ing. Then we are able to find the nearest delta-speed
event to issue the alert.

g. Issuing alerts. Hazard distance is a distance we
select to issue the alert, which is a parameter we can
adjust. We used the notifications on the smartphone to
show the alerts, which has different properties such as
sound, vibration, and text. An exemplary text notifica-
tion is shown in Figure 4.3.

Testing and debugging. There are two ways of testing
and debugging the application.

a. Using the Samsung Galaxy S7 smartphone. We
can test and debug the program using the smartphone.
Many functionalities such as generating alerts can be
tested without the need to move. However, we need to
drive on the highway to test the algorithm and the app.

b. Using emulator. One of the most important
tools of the Android Studio is the emulator. An emu-
lator is like a virtual Android device. It is a hardware
device or a program that pretends to be another

Figure 4.3 Notification on the smartphone.

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2019/24 5

particular device or program that other components
expect to interact with. We can use the emulator to
debug our program on the virtual environment without
any need to have the real smartphone. Plus, we can test
the application on different Android devices. Working
with the emulator is a bit different. For example, we have
to generate the GPS coordinates in a KML/GPS file and
upload it into the emulator. Figure 4.4 and Figure 4.5
show the emulator setup in the Android Studio.

4.2.2 Hardware–Android Auto Device and Android-
Based Smartphone

There are a variety of multimedia receivers that are
applicable with the Android Auto function. The one we
are using is Kenwood DDX9704S, which supports both
Android Auto and Apple CarPlay. It has wide VGA
color LCD display, HD radio, and Bluetooth. Touch
panel control makes it easy operate. Dual phone
connection is supported. When an Android phone is
connected, an option for Android Auto will appear in
the menu. The Android phone that we are using is
a Samsung Galaxy S7 installed with Android v6.0
Marshmallow operating system. Octa-core processor,

Figure 4.4 Android app emulator.

6 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2019/24

high-performance GPU, and 4GB RAM make the
phone ideal for software development and evaluation.
By touching the Android Auto icon on the menu, we
are able to enter the Android Auto system. By default,
the system could provide the functions include Google
map, music players, and contact lists. More apps are
accessible when they are installed in the connected
Android phone. Figure 4.6 shows the Android Auto
device and the Android phone that have been used in
our testing.

The goal of using Android Auto is to issue alerts
using a built-in vehicle hardware device. We used two
ways to issue end-of-queue alerts. The first one is to use
message/voice alerts. An Android app has been devel-
oped to implement this method. The app can run
independently in the Android phone without Android
Auto. But when the Android Auto is connected, the
alarms and messages will all be transferred to the
monitor of Android Auto. In this way, any Android
phone can be used for Android Auto compatibility,
with additional development. Figure 4.7 shows the
interface of the message alert. The content in the banner
and text card could be modified. Figure 4.7 shows the
interface of the Android Auto display when the
message alert is issued.

Besides, with the integration of Google Assistant, the
alert messages can be converted into voice. Tapping on
the banner or the text card, Google Assistant can read
out the content and interact with the driver. The voice
interaction can reduce the distraction level to drivers
and achieve better safety while driving.

The alternative is to synchronize the Android Auto
device with the connected Android phone and mirror
the phone screen. As we found out, Android Auto can
support more apps than only the default ones, but there
is a limitation since most customized apps are forbidden
by Google Inc. recently. The rooting of the phone is
needed before mirroring the phone screen with the
Android Auto device. In this way, more information
can be shown including maps, images, and more intui-
tive interfaces. Figure 4.8 below shows the synchronized
screens of the Android Auto device and the phone
screen.

Both methods can issue end-of-queue alerts to drivers.
However, they both have advantages and disadvan-
tages. The method of message/voice alerts supports
message reading and voice control and is also inde-
pendent from the phone screen, i.e., the phone screen
doesn’t need to be turned on all the time. On the other
hand, limited information can be provided as only texts
are supported. Although the texts can be read through
Google Assistant, it is still not very intuitive to use.
Meanwhile, the method of synchronization of the
phone and the Android Auto device shows the phone
screen on the device monitor and is able to show much
more information. Moreover, it is possible to control
the alerts from both devices. At the same time, rooting
the phone is a disadvantage because it has the risk of
damaging the phone. In such case, these two solutions
can be used for different needs.

Figure 4.5 Upload KML files to emulator.

Figure 4.6 Android devices used for testing.

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2019/24 7

4.3 Summary

In this section, we summarized the hardware
preparation and software development for the proto-
type end-of-queue alerting system. Software programs
were developed to fetch the data from INDOT web

service. Algorithms were developed to issue end-of-
queue alerts. The Android Auto device and Android-
based phone were investigated. Two methods for
issuing alerts on these devices were developed. The
advantages/disadvantages of the two solutions were
evaluated.

Figure 4.7 Message/voice alerts.

Figure 4.8 Synchronization of the smartphone and Android
Auto device.

8 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2019/24

5. EVALUATION OF PILOT ALERTING SYSTEMS
IN DRIVING SIMULATOR (TASK 4)

5.1 Introduction

In this task, a driving simulator-based study was
conducted to evaluate the effectiveness of the developed
prototype end-of-queue alerting system. Figure 5.1
shows TASI DriveSafety DS600c high-fidelity driving
simulator at IUPUI. The driving simulator has 180
degrees of viewing angles to provide realistic and
immersive driving experiences. A partial Ford Focus
cab is instrumented with full-width front interior,
standard driver controls, and active instrumentation.
The driving simulator also supports different signs/
visual signals assigned at different roadside locations.

At this stage of the project, the integrated data
collection apparatus was first developed to prepare for
all the follow-up testing tasks. Then a limited scale
experiments were conducted to (1) test the data
collection apparatus, (2) investigate the scenario devel-
opment capability, and (3) study the effects of end-of-
queue alerting system on driver performance and
driving safety. With this purpose, five subjects were
recruited for driving simulator-based testing. In differ-
ent scenarios, driving performance data were collected
and analyzed for the performance evaluation of the

prototype system. This work will build the foundation
to develop and conduct larger-scale experiments in
the future to further improve the HMI, design, and
performance of the end-of-queue alerting system.

For evaluating the pilot system, an experimental
platform was designed and implemented. The goal of
designing this platform is to simulate a driving envi-
ronment in which the driver would be notified, through
the mobile application, of the upcoming traffic hazards.

Since we already had a driving simulator, the objec-
tive in this phase was to make a bridge between the
driving simulator and the mobile application. This
bridge needs a staged server in between, which in this
experimental platform would also mimic the INDOT
server functions when connecting to the mobile appli-
cation. Therefore, the mobile application receives simu-
lated notifications through the staged server. In this
section of the document, a staged server will be called
server for short.

The platform and its functions are depicted in Figure
5.2, as three modules: HyperDrive (driving simulator),
Server, and Mobile app. Of course, the connection bet-
ween the server and the mobile application is through
a wireless or 4G connection.

In this experimental platform, while a candidate
person is using the driving simulator, location of the
car, as well as other traffic information, are sent to the
server. The server then provides the proper notification
information, which will be pulled by the mobile appli-
cation. Hence, while the driver is inside the driving
simulator, his/her mobile phone would pull the simu-
lated traffic information from the server and function
accordingly.

Given that we already had a driving simulator and
a mobile app, the server and the connection between
the other modules needed to be tailor-designed and
implemented. In the next subsection, technical details
are addressed and explained in detail.

5.2 Technical Approach

5.2.1 Building Modules for Connection and
Communication

Implementation of the evaluation system consists of
three interrelated modules. The first module is the
networking details, around which the system design is
revolving. The second module is the web service,
providing the server and mobile application connection.
And the third module is the connection and commu-
nication protocol between the server and the driving
simulator. Details about all three modules are given as
follows.

Module 1—Networking details. In order to avoid
potential problems with the simulator machine that
may cause it to disconnect from the internet, the server
was set up on a separate machine. The connection
between the simulator and server machine is through a

Figure 5.1 TASI DriveSafety high-fidelity driving simulator.

Figure 5.2 Building the experimental platform for subject
testing.

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2019/24 9

directly connected Ethernet cable, where the IP addresses
are manually set.

The connection between the server and the mobile
application is established through a second network
adapter (NIC) on the server machine, which is con-
nected to the internet. The server machine on the latter
NIC is given a static IP address to be accessed from
outside. Only a few selected ports were left open on the
server machine for incoming connections.

Module 2—Web service: Mobile app to server
connection. The first step is to set up a web service.
The mobile application would pull notifications upon
request. The notification information is in JSON for-
mat, mimicking the INDOT server JSON files.

Since web servers and services are easier to set up in
a Linux environment, the WSL on the Window OS
was utilized to set up a Linux Ubuntu v18.04. Due to
limited applications and for quick prototyping, the
web service within the Linux OS was implemented
using a Django development environment in debug-
ging mode.

Currently, a webpage can be accessed through the
address 134.68.77.18:1234 or tasi.dynu.net:1234. The
tasi.dynu.net domain is acquired freely and for tempor-
ary use from the dynu.com website.

The notification can be obtained by the mobile
application upon an HTTP request through the
tasi.dynu.net:1234/get-notif. The notification informa-
tion will be sent to the mobile application in JSON
format.

The web service is designed to provide the mobile
application with the simulated notification upon request.
However, for a scenario where some fake notification
needs to be manually generated, another service is
accessibly designed at tasi.dynu.net:1234/new-alert. By
visiting this address, a new notification will be gene-
rated which can be accessed by the mobile application.
The fake notification information, for now, is hard-
coded. In the future it might be possible to modify the
fake notification information.

Module 3—Simulator to server connection. In this
experiment, the information from the driving simulator
needs to be sent to the server. According to the Hyper-
Drive program documents, a socket connection could
be made between the program as a client, and a
receiving end as a server. Therefore, the design of this
part is around network socket approach.

On the server machine, a server program was
implemented. This server program is bound to a given
port on the NIC with a direct network connection node,

which has a manually set IP address. The server pro-
gram would constantly listen and forward the incoming
packets to the web service.

On the client-side, which is the driving simulator
(HyperDrive program) we had some difficulty. Initially
we attempted to make the socket connection between
the HyperDrive program and the server work, which
failed. The software documents were not very helpful
in that regard. A response regarding this issue is still
pending from the software developing company.

As a B plan, we decided to have the simulator
information written in a file and develop an interface
program on the client-side to read the file and prepare
and send the information to the server. Currently this
interface program on the client-side does the following:

1. Read the file (which is written into by the simulator
program) line by line.

2. Parse each line and extract the required information from
the file.

3. Prepare the information in JSON format to be sent to the
server.

As of now, all the above functionalities were imple-
mented in the client interface. However, the last bit of
the puzzle is still holding us back from going forward.
Unfortunately, the HyperDrive simulator writes the
simulated information into the file only at the end of
the simulation, not during runtime. What we expected
was to have the information dumped into the file during
the simulation and then send it to the server. This way,
while the candidate driver was driving the car, the
mobile application would have pulled the information
from the server.

5.2.2 Building the Test Scenarios Using the Driving
Simulator

There are three components in the driving simulator,
which are HyperDrive, Vection, and Dashboard. The
HyperDrive is the preparation and scenario creation
stage. The Vection is the software that runs the simu-
lation. The dashboard is the software that interfaces the
HyperDrive and Vection. The overall structure of the
driving simulator is shown inFigure 5.3.

In order to test the highway end-of-queue alerting
system with real driving conditions on I-465, a test
scenario with a simulated I-465 was built in the driving
simulator DS-600. The primary software was Hyper-
Drive, whose purpose is to build the test environment
with roadway networks and controlled entities. Entities

are used to determine an object in the world, such as a
vehicle or a pedestrian.

As shown in Figure 5.4, the total length of I-465 is
about 52.79 miles (<84.46 km) with a width of 1.71
miles and length of 14.68 miles. There are three main
purposes to build the I-465 test scenarios: (1) the
simulator can represent real-life vehicles within the
simulation by using GPS data in the future; (2) enable
validation of developed theories with real vehicle data;
and (3) allow vehicles with realistic data from sensory
hardware to interact with other virtual vehicles. There-
fore, a ring highway test scenario was built based on the
real I-465 in Figure 5.4.

The HyperDrive Interface is depicted in Figure 5.5,
the position of all toolbars are also marked, such as
Menu Bar, Main Toolbar, Visualization Window Tool-
bar, and Authoring Palette. The solid white lines are
world boundaries. White dots are spaced in a 200
meters grid in the Visualization Window. The Author-
ing Palette contains all of the available Tiles, Scenario
Tools, Entities, and the World Object Browser. The
specific tabs and their corresponding elements are
summarized as follows:

1. Tile Tab: It contains all the tiles available to users,
different culture (a type of environment such as urban
and rural), road type (such as freeway or community
road), and signals (such as traffic lights) can be selected
as desired requirements. The two ways with six lanes
were selected to simulate the I-465. Since there are some
limitations of the elements, we cannot change the curva-
ture of curved road elements in the simulator. Thus, for
some curved road in real I-465, we can only use the
general curved road provided in the Tile Tab.

2. Scenario Tools Tab: It contains all tools that help define
the events in the scenario such as where the subject starts
and at what location an event is triggered. Three starting
points were used in the scenario with respect to the
three driving scenarios of normal driving (ND), driving
with distraction (DWD), and driving with drowsiness
(DWDS). Since we have six test scenarios based on the
scenario design (ND with or without alert, DWD with or
without alert, and DWDS with or without alert), the
distances from the starting point to the end of queue for
three driving scenarios of ND, DWD, and DWDS are
around 10 miles, 15 miles, and 20 miles, respectively.
Several location triggers (based on the required distance
from the trigger) were also utilized to trigger the event,
which can let other vehicles join the highway with ego
vehicle and maintain the desired speed to make a traffic
jam at the end of the test scenarios. Since we cannot add
the traffic queue and issue a warning dynamically when
the simulation is running due to the limitation of the

Figure 5.3 Overall structure of the driving simulator.

10 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2019/24

Figure 5.4 Illustration of highway I-465.

Figure 5.5 HyperDrive interface.

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2019/24 11

driving simulator, three indicators of buildings for

triggering the alerts in cellphone were designed.

3. Entities and Static Entities Tab: It has three types of

entities—dynamic entities, kinematic entities, and static

entities. Several dynamic entities of vehicles were used
and they can be controlled by scripting to simulate

the queue. Some static entities of buildings were also

placed on the roadside of Highway I-465 in the driving

simulator, which makes the driving conditions more

realistic.

4. World Object Browser: Once all the elements have been

added to the scenario, every object in HyperDrive has a

set of properties that are accessed in the World Object

Browser. From here, the position of X, Y, Z of each

object can be modified based on the specific design

purpose.

The completed I-465 highway test scenario is
demonstrated in Figure 5.6, and the test condition
in our driving simulator room is shown in Figure 5.7.
The vehicle dynamic information was also displayed
on the left projected screen while testing, which
includes vehicle longitudinal acceleration, vehicle
lateral acceleration, steering angle, X position, Y
position, and Z position on the map. Table 5.1 also
shows several key variables that were collected after the
simulation.

Figure 5.6 Completed highway I-465 in DS-600 driving simulator.

Figure 5.7 Actual test conditions.

TABLE 5.1
Key Variables Collected After Simulation

Key Variable Name Unit

Longitudinal acceleration m/s2

Crash or not 0 or 1(binary)

Crash speed m/s

Brake pressure 0–100%

Steering angle degree

Vehicle location m

12 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2019/24

5.2.3 Design of the Data Collection

Based on the current development of the end-of-
queue alerting system, we have designed six tests to
evaluate the effects of having an end-of-queue alerting
system in the driving simulator. The six scenarios are
categorized as either no-alert, no end-of-queue alert-
ing system in the car, or alert, an end-of-queue
alerting system in the car. If an end-of-queue alert is
issued, the alert will be issued about 1.5 miles before
the end of the queue. Under both categories, there are

three driving environments: normal, distracted, or
drowsy. The non-alert category will act as a baseline
to be compared with the tests in the alert category. To
ensure authenticity, subjects are required to follow all
driving laws and rules observed in the real world. The
detailed descriptions of the environments are the
following:

N Normal: During this test, subjects are asked to drive in

the simulator for about ten miles on a replica of highway

I-465 with moderate traffic. At the end of the ten-mile

drive, a traffic queue will appear. This test takes about

ten minutes.

N Distracted: During this test, subjects are asked to drive in

the simulator for about 15 miles on a replica of highway

I-465 with moderate traffic. Before the subject drives past

the would-be trigger point in non-alert scenarios or

triggers an alert in alert scenarios, the data collector will

randomly send the subject a couple of text messages that

require responses. After the subject drives past the

would-be trigger point or a traffic alert is issued, the

data collector must message the subject to create a

distraction to the upcoming traffic. At the end of the 15-

mile drive, a traffic queue will appear. This test takes

about 15 minutes.

N Drowsy: During this test, subjects are asked to drive

for about 20 miles on a replica of highway I-465 with

moderate traffic. The subject should drive as they

normally would, but they should be drowsy when they

perform this test. To help ensure drowsiness, this test

is the last environment tested in both categories.

Additionally, the time of this test is performed is plan-

ned around when subjects will naturally get tired (i.e., in

the afternoon after lunchtime). This test takes about

20 minutes.

The total time it takes to collect data for all six tests
is about two hours. The order of the tests is shown in
Figure 5.8.

To measure the effects of an end-of-queue alert
system, the maximum braking pressure, crash rate, and
other factors are collected and analyzed. The analyzed

Figure 5.8 Order of tests for data collection.

Figure 5.9 Comparison of extreme steering angles between cases with and without end-of-queue alerts when approaching the
end-of-traffic queues.

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2019/24 13

data are collected after the car passes alert triggering
locations (no matter if the alert is really triggered or
not). This means that no matter if the case is with alerts
or without alerts, for the same scenarios, the data were
collected for the same part of the driving route.

5.3 Results

Five subjects, all under the age of 35, were recruited
to participate in this pilot study. The analysis focuses
on evaluating the usefulness of the prototype end-of-
queue system in reducing extreme behaviors when
approaching to the traffic queues. We would like to
compare the driver inputs (brakes and steering wheels)
as well as the vehicle dynamics measures when the alert
is present or not for normal, distracted, and drowsy
drivers.

Due to the limited sample size, there are no actual
crashes observed during the driving simulator study.

5.3.1 Effects of Alerts on Braking, Steering Wheel, and
Vehicle Dynamics

The first part of the data analysis is to compare the
extreme driver inputs and extreme vehicle longitudinal
and latitude acceleration when approaching the end-
of-queue with and without the alerts. The results
are shown in Figures 5.9 to 5.12. We can tell that for
all measurements, including extreme steering angles,
extreme braking percentage, extreme deceleration

(longitudinal deceleration), and extreme side-way accel-
eration (latitude acceleration), the average values are
smaller for cases with end-of-queue alerts provided.
This indicates that this alert system can overall reduce
intensive driving behavior, and thus has the potential to
increase driving safety.

5.3.2 Effects of Alerts and Driver Status on Driving
Performance

Although the previous section has confirmed the
benefits of applying the end-of-queue system, it is also
interesting to see what the effects are when considering
both driver status and the presence of alerts as
combined variables. The results are shown below.

The first discussion focuses on the extreme steering
wheel angles, representing the driver’s input to the
steering wheel when approaching the end of queue with
or without alerts. Different driver statuses are also
applied in the analysis. The results are shown in Figure
5.13. We can see that for drowsy and normal driving,
the alert can help remove extreme driver steering inputs.
However, for the distracted driving scenario, drivers
on average, have a bigger extreme steering angle when
alert is provided compared to the distracted driving
without alert, although the difference is limited. This
result may be caused by the limited number of sample
size. Also, more detailed time-series data analysis needs
to be conducted to further reveal the braking behavior
patterns.

Figure 5.10 Comparison of extreme braking percentage between cases with and without end-of-queue alerts when approaching
the end-of-traffic queues.

Figure 5.11 Comparison of extreme deceleration between cases with and without end-of-queue alerts when approaching the end-
of-traffic queues.

14 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2019/24

Similar results were found for the extreme braking
percentages, among cases with and without alerts and
under different driver status, as illustrated in Figure
5.14. For this measurement, end-of-queue approaching
alerts can significantly reduce the average extreme
braking percentages for drivers in normal or distracted
status. However, for drowsy drivers, the effects of the
alerts on this braking measure is reversed. This again
may suggest the necessity of increasing the sample size
and conduct more detailed time-based data analysis to
better understand the behavior patterns.

5.4 Summary

In this section, we mainly introduced the driving
simulator DS-600 and how we built the I-465 highway
test scenarios. The background and basic descriptions
of DS-600 have been introduced. The functionality of
the driving simulator is also demonstrated along with
its embedded software and hardware. Several test
scenario examples of DS-600 and its overall structure
were also demonstrated. The specific tabs, tools, and
entities used for creating the I-465 test scenarios were

Figure 5.12 Comparison of extreme latitude deceleration between cases with and without end-of-queue alerts when approaching
the end-of-traffic queues.

Figure 5.13 Comparison of extreme steering angles between cases with and without end-of-queue alerts when approaching the
end-of-traffic queues at different driver statuses.

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2019/24 15

also illustrated, and the desired data were saved after
the simulation. Five subjects were recruited to perform
driving tests on the driving simulator for pre-defined

test scenarios. Data were collected and analyzed. The
results showed the benefits of having the end-of-queue
alerting system to improve driving safety.

Figure 5.14 Comparison of extreme braking percentages between cases with and without end-of-queue alerts when approaching
the end-of-traffic queues at different driver statuses.

6. EVALUATION OF REFINED PILOT ALERTING
SYSTEMS WITH LIMITED ROAD TESTING
(TASK 5)

To test the system in real traffic situations, a group of
tests was performed on different highways. The
developed end-of-queue alerting app was installed on
the smartphone of the testing subjects, which con-
tinuously collect location and highway traffic queue
data. Testing this application in a predefined scenario
was a hard task because of the real-time nature of
INDOT data. Since the data is real-time, we had to
develop a mechanism to detect the delta speed events in
order to drive there for our testing. We added extra
icons on the map to see all the queue events across the
city. We also added related information on the icons,
which are shown in Figure 6.1.

We went on different highways where a delta-speed
event was detected and, in most cases (around 80%),
we were able to get the alert successfully, as shown in
Figure 6.2. These tests are necessary to find problems
in the computer programs and improve them for
the app applications. The application performs well
on straight paths in most of the cases. Occasionally,
we have problems of issuing alerts on a very curved
path. For the cases we didn’t get the notifications, we
simulated the same situation on the emulator and
debugged the code. In general, the application had
a good performance in most cases on highways and
we are still doing more tests to find and solve any
possible problems.

Figure 6.1 Visualizing INDOT speed events map.

16 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2019/24

Figure 6.2 On-road tests on different highways.

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2019/24 17

7. SUMMARY

In this project, we develop a prototype in-vehicle
end-of-queue alerting system that is based on the probe
vehicle data from INDOT. Speed changes among
different road segments were used to identify slow
traffic queues, which are compared with vehicle
locations and moving directions to detect potential
end-of-queue crashes. This prototype system was
designed to issue alert messages to drivers approaching
the highway traffic queues via an Android-based
smartphone app and an Android Auto device. The
performance of this system was evaluated using both
the driving simulator and on-road test runs. The results
showed the effectiveness and benefits of this prototype
system to improve driving safety.

REFERENCES

Lee, J. D., McGehee, D. V., Brown, T. L., & Reyes, M. L. (2002).

Collision warning timing, driver distraction, and driver

response to imminent rear-end collisions in a high-fidelity

driving simulator. Human factors, 44(2), 314–334. https://
doi.org/10.1518/0018720024497844

Mekker, M., Li, H., McGregor, J., Kachler, M., & Bullock,
D. M. (2017). Implementation of a real-time data driven
system to provide queue alerts to stakeholders. In 2017
IEEE 20th International Conference on Intelligent Trans-
portation Systems. Institute of Electrical and Electronics
Engineers. https://doi.org/10.1109/itsc.2017.8317648

Mekker, M., Remias, S. M., McNamara, M. L., & Bullock, D. M.
(2020). Characterizing interstate crash rates based on traf-
fic congestion using probe vehicle data (JTRP Affiliated
Reports, Paper 31). https://docs.lib.purdue.edu/jtrpaffdocs/31/

Nowakowski, C., Vizzini, D., Gupta, S. D., & Sengupta, R.
(2012). Evaluation of real-time freeway end-of-queue alert-
ing system to promote driver situational awareness. Trans-
portation Research Record: Journal of the Transportation
Research Board, 2324(1), 37–43. https://doi.org/10.3141/
2324-05

Tampère, C. M. J., Hoogendoorn, S. P., & van Arem, B.
(2009). Continuous traffic flow modeling of driver support
systems in multiclass traffic with intervehicle commu-
nication and drivers in the loop. IEEE Transactions on
Intelligent Transportation Systems, 10(4), 649–657. https://
doi.org/10.1109/TITS.2009.2026442

https://doi.org/10.1518/0018720024497844
https://doi.org/10.1518/0018720024497844
https://doi.org/10.1109/itsc.2017.8317648
https://docs.lib.purdue.edu/jtrpaffdocs/31/
https://doi.org/10.3141/2324-05
https://doi.org/10.3141/2324-05
https://doi.org/10.1109/TITS.2009.2026442
https://doi.org/10.1109/TITS.2009.2026442

About the Joint Transportation Research Program (JTRP)
On March 11, 1937, the Indiana Legislature passed an act which authorized the Indiana State
Highway Commission to cooperate with and assist Purdue University in developing the best
methods of improving and maintaining the highways of the state and the respective counties
thereof. That collaborative effort was called the Joint Highway Research Project (JHRP). In 1997
the collaborative venture was renamed as the Joint Transportation Research Program (JTRP)
to reflect the state and national efforts to integrate the management and operation of various
transportation modes.

The first studies of JHRP were concerned with Test Road No. 1 — evaluation of the weathering
characteristics of stabilized materials. After World War II, the JHRP program grew substantially
and was regularly producing technical reports. Over 1,600 technical reports are now available,
published as part of the JHRP and subsequently JTRP collaborative venture between Purdue
University and what is now the Indiana Department of Transportation.

Free online access to all reports is provided through a unique collaboration between JTRP and
Purdue Libraries. These are available at http://docs.lib.purdue.edu/jtrp.

Further information about JTRP and its current research program is available at
http://www.purdue.edu/jtrp.

About This Report
An open access version of this publication is available online. See the URL in the citation below.

Li, L., Chen, Y., Tian, R., & Li, F. (2019). Back of queue warning and critical information delivery to
motorists (Joint Transportation Research Program Publication No. FHWA/IN/JTRP-2019/24).
West Lafayette, IN: Purdue University. https://doi.org/10.5703/1288284317102

https://doi.org/10.5703/1288284317102
http://www.purdue.edu/jtrp
http://docs.lib.purdue.edu/jtrp

	SPR-4306_Cover accessible.pdf
	SPR 4306_Title pages_corrected.pdf
	SPR-4306_Form 1700_cx 7-7-20.pdf
	jtr-spr-4306 final web file_corrected 7-7-20.pdf
	SUMMARY
	Chapter 1
	1.1 Background
	1.2 Research Objectives and Approaches
	1.3 Research Team

	Fig 1.1
	1.4 Organization of the Report

	Chapter 2
	2.1 Introduction
	2.2 Technical Approach
	2.3 Summary

	Fig 2.1
	Chapter 3
	3.1 Introduction
	3.2 Technical Approach
	3.3 Summary

	Chapter 4
	4.1 Introduction
	4.2 Technical Approach
	4.2.1 Software—Android Studio

	Fig 2.2
	Fig 4.1
	Fig 4.2
	Fig 4.3
	4.2.2 Hardware-Android Auto Device and Android-Based Smartphone

	Fig 4.4
	4.3 Summary

	Fig 4.5
	Fig 4.6
	Chapter 5
	5.1 Introduction
	5.2 Technical Approach
	5.2.1 Building Modules for Connection and Communication

	Fig 4.7
	Fig 4.8
	Fig 5.1
	Fig 5.2
	5.2.2 Building the Test Scenarios Using the Driving Simulator

	Fig 5.3
	Fig 5.4
	Fig 5.5
	5.2.3 Design of the Data Collection

	Fig 5.6
	Fig 5.7
	Table 5.1
	5.3 Results
	5.3.1 Effects of Alerts on Braking, Steering Wheel, and Vehicle Dynamics
	5.3.2 Effects of Alerts and Driver Status on Driving Performance

	Fig 5.8
	Fig 5.9
	5.4 Summary

	Fig 5.10
	Fig 5.11
	Fig 5.12
	Fig 5.13
	Chapter 6
	Fig 5.14
	Fig 6.1
	Chapter 7
	References
	Ref 1
	Ref 2
	Ref 3
	Ref 4
	Ref 5
	Fig 6.2

	SPR-4306_Cover accessible

Accessibility Report

		Filename:

		fulltext.pdf

		Report created by:

		

		Organization:

		

[Enter personal and organization information through the Preferences > Identity dialog.]

Summary

The checker found problems which may prevent the document from being fully accessible.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 0

		Passed: 28

		Failed: 2

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Failed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Passed		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Failed		Appropriate nesting

Back to Top

